Part Number Hot Search : 
PCD6001 1N4749A NTP17SL6 NTE1416 013TR 8M000 PE42521 ANTXV2N
Product Description
Full Text Search
 

To Download IRF4104S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 automotive mosfet pd - 94639a hexfet ? power mosfet v dss = 40v r ds(on) = 5.5m ? i d = 75a specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on- resistance per silicon area. additional features of this design are a 175c junction operating tempera- ture, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. s d g description advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax features irf4104 IRF4104S irf4104l d 2 pak IRF4104S to-220ab irf4104 to-262 irf4104l absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (packa g e limited) i dm p u l se d d ra i n c urrent  p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) si n gl e p u l se a va l anc h e e ner gy  mj e as (tested ) si n gl e p u l se a va l anc h e e ner gy t este d v a l ue  i ar a va l anc h e c urrent   a e ar r epet i t i ve a va l anc h e e ner gy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw  thermal resistance parameter typ. max. units r jc junction-to-case ??? 1.05 c/w r cs case-to-sink, flat greased surface  0.50 ??? r ja junction-to-ambient  ??? 62 r ja junction-to-ambient (pcb mount)  ??? 40 220 120 see fig.12a, 12b, 15, 16 140 0.95 20 max. 120 84 470 75 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m)
 2 www.irf.com electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.032 ??? v/c r ds(on) static drain-to-source on-resistance ??? 4.3 5.5 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 63 ??? ??? v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 68 100 q gs gate-to-source charge ??? 21 ??? nc q gd gate-to-drain ("miller") charge ??? 27 ??? t d(on) turn-on delay time ??? 16 ??? t r rise time ??? 130 ??? t d(off) turn-off delay time ??? 38 ??? ns t f fall time ??? 77 ??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 3000 ??? c oss output capacitance ??? 660 ??? c rss reverse transfer capacitance ??? 380 ??? pf c oss output capacitance ??? 2160 ??? c oss output capacitance ??? 560 ??? c oss eff. effective output capacitance ??? 850 ??? source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current ??? ??? 75 (body diode) a i sm pulsed source current ??? ??? 470 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 23 35 ns q rr reverse recovery charge ??? 6.8 10 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 10v, i d = 75a i d = 75a v ds = 32v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v mosfet symbol showing the integral reverse p-n junction diode. t j = 25c, i s = 75a, v gs = 0v  t j = 25c, i f = 75a, v dd = 20v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 75a  v ds = v gs , i d = 250a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 32v, ? = 1.0mhz v gs = 0v, v ds = 0v to 32v  v gs = 10v  v dd = 20v i d = 75a r g = 6.8 ?
 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 25c    


 
    
  0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 175c    


 
    
  4 6 8 10 12 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 15v 20s pulse width 0 20406080100 i d, drain-to-source current (a) 0 20 40 60 80 100 120 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width
 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 5000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20406080100 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v vds= 20v i d = 75a 0.2 0.6 1.0 1.4 1.8 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 1000 v ds , drain-tosource voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec
 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 i d , d r a i n c u r r e n t ( a ) limited by package ri (c/w) i (sec) 0.371 0.000272 0.337 0.001375 0.337 0.018713 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri
 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j )      
 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 75a
 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets  ! ? "# !  ?  $!  ? "!%&!# !  !'(! p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
     + - + + + - - -        ? )* $$! +,  ? )!(!-! .  ? #  $$! +/00 ?  .  1!)!. !!   v ds 90% 10% v gs t d(on) t r t d(off) t f   $!2 3 1 4 / 0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms
 www.irf.com 9 

 dimensions are shown in millimeters (inches) lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. 

  
 example: in the assembly line "c" t his is an irf 1010 lot code 1789 as s e mb le d on ww 19, 1997 part number assembly lot code dat e code year 7 = 1997 line c week 19 logo rectifier international example: t his is an ir f 1010 lot code 1789 as s emb led on ww 19, 1997 in the assembly line "c" international rectifier logo lot code part number dat e code for gb production
 10 www.irf.com  


  
 f 530s t his is an irf 530s wit h lot code 8024 as s emble d on ww 02, 2000 in the assembly line "l" as s e mb l y lot code int ernat ional rectifier logo part number dat e code ye ar 0 = 2000 we e k 02 line l  


 dimensions are shown in millimeters (inches) dat e code in the assembly line "l" as s emble d on ww 02, 2000 t his is an irf 530s wit h lot code 8024 int ernat ional logo rectifier lot code part number f 530s for gb production
 www.irf.com 11 to-262 package outline dimensions are shown in millimeters (inches) to-262 part marking information e x a m p l e : t h i s i s a n i r l 3 1 0 3 l l o t c o d e 1 7 8 9 a s s e m b l y p a r t n u m b e r d a t e c o d e w e e k 1 9 l i n e c l o t c o d e y e a r 7 = 1 9 9 7 a s s e m b l e d o n w w 1 9 , 1 9 9 7 i n t h e a s s e m b l y l i n e " c " l o g o r e c t i f i e r i n t e r n a t i o n a l  igbt 1- gate 2- collec- tor
 12 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the automotive [q101]market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 08/03 to-220ab package is not recommended for surface mount application.  


 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.04mh r g = 25 ? , i as = 75a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . 
  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.   this value determined from sample failure population. 100% tested to this value in production.  this is only applied to to-220ab pakcage.  this is applied to d 2 pak, when mounted on 1" square pcb (fr- 4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.


▲Up To Search▲   

 
Price & Availability of IRF4104S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X